Association Rule Pruning based on Interestingness Measures with Clustering

نویسندگان

  • S. Kannan
  • R. Bhaskaran
چکیده

Association rule mining plays vital part in knowledge mining. The difficult task is discovering knowledge or useful rules from the large number of rules generated for reduced support. For pruning or grouping rules, several techniques are used such as rule structure cover methods, informative cover methods, rule clustering, etc. Another way of selecting association rules is based on interestingness measures such as support, confidence, correlation, and so on. In this paper, we study how rule clusters of the pattern Xi Y are distributed over different interestingness measures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Clustering techniques and FCA to characterize Interestingness Measures

Formal Concept Analysis "FCA" is a data analysis method which enables to discover hidden knowledge existing in data. A kind of hidden knowledge extracted from data is association rules. Di erent Interestingness Measures "IMs" were reported in the literature to extract only relevant association rules. Given a dataset, the choice of a good interestingness measure remains a challenging task for a ...

متن کامل

Association rule mining with a correlation-based interestingness measure for video semantic concept detection

Content-based multimedia retrieval and automatic semantic concept detection research areas have been motivated by the high demands of multimedia applications and services. Due to its high efficiency and good performance, association rule mining (ARM) has been adopted to discover the association patterns from the multimedia data and predict the target concept classes in various media types. As a...

متن کامل

A Graph-based Clustering Approach to Evaluate Interestingness Measures: A Tool and a Comparative Study

Finding interestingness measures to evaluate association rules has become an important knowledge quality issue in KDD. Many interestingness measures may be found in the literature, and many authors have discussed and compared interestingness properties in order to improve the choice of the most suitable measures for a given application. As interestingness depends both on the data structure and ...

متن کامل

Discovering Interesting Rules from Financial Data

In this paper problem of mining data with weights and finding association rules is presented. Some applications are discussed, especially focused on financial data. Solutions of the problem are analyzed. A few approaches are proposed and compared. Pruning based on measures of rules interestingness is described and some measures proposed in literature are shown. Influence of data weights on thes...

متن کامل

Numeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm

Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/0912.1822  شماره 

صفحات  -

تاریخ انتشار 2009